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Abstract— Since its official introduction in 2012, the Robot
Web Tools project has grown tremendously as an open-
source community, enabling new levels of interoperability and
portability across heterogeneous robot systems, devices, and
front-end user interfaces. At the heart of Robot Web Tools
is the rosbridge protocol as a general means for messaging
ROS topics in a client-server paradigm suitable for wide
area networks, and human-robot interaction at a global scale
through modern web browsers. Building from rosbridge, this
paper describes our efforts with Robot Web Tools to advance: 1)
human-robot interaction through usable client and visualization
libraries for more efficient development of front-end human-
robot interfaces, and 2) cloud robotics through more efficient
methods of transporting high-bandwidth topics (e.g., kinematic
transforms, image streams, and point clouds). We further
discuss the significant impact of Robot Web Tools through
a diverse set of use cases that showcase the importance of a
generic messaging protocol and front-end development systems
for human-robot interaction.

I. INTRODUCTION

The recent rise of robot middleware and systems software
has drastically advanced the science and practice of robotics.
Similar to a computing operating system, robot middleware
manages the interface between robot hardware and software
modules and provides common device drivers, data struc-
tures, visualization tools, peer-to-peer message-passing, and
other resources. Advances in robot middleware have greatly
improved the speed in which researchers and engineers can
create new systems applications for robots by bringing a
“plug-and-play” level of interoperability and code reuse.
Projects in the space have supported a variety of cross-
language and cross-platform tools that promote common
functionality and best practices of component-based software
design.

Among these efforts, the Robot Operating System (ROS)
[1] has become the de facto standard middleware for enabling
local area network control of robot systems. Developed
initially for use with the Willow Garage PR2 robot, ROS
is an open-source effort to provide the network protocols,
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Fig. 1. The standard Robot Web Tools 3D user interface on multiple
operating systems with multiple robots and cloud simulation instances.
Clockwise from top right, PR2 on Windows, NASA Robonaut 2 on OS
X, Clearpath Jackal on Android phone, NASA Valkyrie on iOS iPad, and
Rethink Baxter on Ubuntu.

build environment, and distribution release pipelines for
researchers and developers to build robot systems and ap-
plications without re-writing standard functionality for every
application or robot. Since its introduction, the number of
individuals, laboratories, companies, and projects using ROS
has grown tremendously [2]. This ROS community has also
developed important general-use libraries for collision-free
motion planning, task execution, 2D navigation, and visu-
alization that have proved invaluable standards in robotics
research.

Despite its many advantages, ROS and robot middleware
in general has many shortcomings with regards to usabili-
ty/accessibility, security, portability, and platform dependen-
cies. For ROS, the only officially supported operating system
is Ubuntu, a popular Linux distribution. Given that Ubuntu
is used by less than two percent of worldwide computer
users [3], ROS remains largely aimed for prototyping lower-
level software systems. While there are projects that pro-
vide experimental support for operating systems other than
Ubuntu, such as OS X and Arch Linux [4], those platforms
are not fully stable and require specific support for the
intricacies of each OS. As such, ROS in its current form
is neither a standard nor sufficient for development end-user
robot applications for human-robot interaction research.

In terms of cloud robotics, ROS largely assumes dis-
tributed computing over a local area network (LAN). Though



distributed in theory1, the ROS middleware uses a central-
ized system for keeping track of peer-to-peer handshaking
and globally relevant information like kinematic transforms,
parameters, robot state, etc. Consequently, typical ROS oper-
ation proved problematic for cases that require remote com-
munications over wide area and bandwidth limited networks.

Addressing these shortcomings and others, we present an
analysis of the Robot Web Tools (RWT) project in terms of
its ongoing uses and applications across robotics, present
advancements for communication of robotics-oriented big
data, and future directions addressing improved network
efficiency. Initially proposed in [6], RWT is an ongoing
effort to realize seamless, general, and implementation-
independent applications layer network communications for
robotics through the design of open-source network protocols
and client libraries. A principal goal of RWT is to converge
robot middleware (i.e. ROS) with modern web and network
technologies to enable a broadly accessible environment for
robot front-end development, cloud robotics, and human-
interaction research suitable for use over public wide area
networks. Instead of relying on the complex network config-
uration required by ROS and other cloud robotics paradigms,
we have extended the generic rosbridge protocol [7] of
RWT that can operate over a variety of network transports,
including the web-accessible WebSockets and considerably
improved the interoperability of robot systems, as demon-
strated by the openEASE project (see Figure 1).

Our analysis of Robot Web Tools in this paper will
cover: 1) the design of the RWT client-server architecture
and use for developing web-accessible user interfaces for
robots, 2) technical challenges and improved methods for
network transport of high-bandwidth ROS topics, such as for
articulated kinematics transforms, point clouds, and image
streams, and 3) a survey of broader adoption and use of RWT
in applications across robotics research and development.

II. RELATED WORK
Many robotics researchers have utilized Internet and Web

technologies for remote teleoperation, time sharing of robot
experimentation, data collection through crowdsourcing, and
the study of new modes of human-robot interaction. As early
as 1995, researchers enabled remote users to control a robotic
arm to manipulate a set of colored blocks over the Web
[8]. Goldberg enabled web users to maintain and monitor
a garden, in which they could control a robot to perform
tasks such as plant seeds and water plants [9]. Crick et
al. presented remote users with a maze through which they
were able to navigate using a robot, enabling the researchers
to study how different levels of visual information affected
successful navigation [10]. Building on these earlier efforts,
a growing number of projects have recently emerged to
allow researchers and end-users access to complex mobile
manipulation systems via the web for remote experimen-
tation [11], [12], human-robot interaction studies [13], and
imitation learning [14].

1From the ROS documentation[5]: “there must be complete, bi-directional
connectivity between all pairs of machines, on all ports.”

More broadly, the field of cloud robotics research focuses
on systems that rely on any form of data or computation
from a network to support their operation [15]. Using this
definition, a number of cloud robotics architectures have
been proposed [16], [17], [18] aimed to offload as much
computation as possible onto a “remote brain” unbounded
by normal resource limits. One example is the RoboEarth
project [18] which utilizes the Rapyuta cloud engine [19].
Rapyuta was developed as a way of running remote ROS
processes in the cloud , using a rosbridge-inspired protocol
of JSON-contained ROS topics.

While this definition creates a convenient vision of “cloud-
enabled robots”, it casts cloud robotics purely as a collection
of proprietary back-end services without regard to broader
interoperability and human accessibility. In contrast, RWT
considers a more inclusive definition for “robot-enabled
clouds” that also considers human-accessible endpoints and
interfaces in a network, such as web browsers. With contin-
ued advances in robotics-oriented protocols, cloud robotics
has the potential to further both human-robot interaction and
expanded off-board computation in concert.

III. DESIGN AND ARCHITECTURE

In contrast to the distributed publish-subscribe architecture
of ROS, RWT was designed to be a client-server architecture.
The RWT client-server architecture emulates the design of
the earlier Player/Stage robot middleware [20], [21] as well
as the dominant paradigm for web development. Client-
server systems separate a computational workload and re-
sources into services. These services have providers (servers)
and consumers (clients), where client processes request ser-
vices from a server process. A wide variety of services can
be provided such as to interface with a device, query for
certain information, compute special routines or functions,
and more, forming a cascade of services that ultimately
lead to the user interface. Similar to the remote procedure
call, client-server processes are commonly request-reply in-
teractions communicated by message passing over networks.
Broadcast and stream-oriented services, common to publish-
subscribe in ROS, can also be supported in the client-server
design.

The core element of client-server architectures is an estab-
lished communications protocol that allows the implementa-
tion specifics of services to be abstracted. Such protocols
enable clients and services to effectively speak the same
language purely through messages. It is this message-based
interoperability that has been the engine of growth for the
Internet (via the IP protocol) and the World Wide Web
(via the HTTP protocol). In contrast, ROS uses an informal
protocol (TCPROS) with typed data messages (ROS topics)
but no established definition. As such, ROS is more suited
to being a build and distribution system for software instead
of a general message passing architecture.

The established protocol for RWT is rosbridge [7], [22].
rosbridge communicates ROS data messages contained in the
JavaScript Object Notation (JSON) for straightforward mar-
shalling and demarshalling. Below is an example rosbridge



Fig. 2. Number of HTTP Requests to the CDN Libraries for 2015

message for a 6-DOF velocity command for a robot to move
forward encoded in JSON:

{ "op": "publish",
"topic": "/cmd_vel",
"msg": {"linear":{"x":1.0,"y":0,"z":0},

"angular":{"x":0,"y":0,"z":0}
}

Through its use of WebSockets (a protocol built on top
of HTTP), rosbridge can be readily used with modern
web browsers without the need for installation. This fact
combined with its portability and pervasive use makes the
web browser an ideal platform for human-robot interaction.
RWT 1.0 included a simple lightweight client library known
as ros.js [22] and a user interface and visualization pack-
age known as WViz (web-visualizer) [12], [11]. ros.js
provided basic ROS functionality to browser-based programs
via the early version of the rosbridge protocol, known now
as rosbridge v1.

In RWT 2.0, the rosbridge v2 protocol2 added the abil-
ity to communicate more efficiently (e.g., specification of
compression types) and provide near-complete access to
ROS functionality. RWT 2.0 allowed for more elaborate,
responsive, and reliable interfaces to be built [6] and stricter
security measures regarding access by unauthorized remote
clients [23].

To address a wide range of use cases and applications
development for HRI, the three JavaScript libraries were
developed to facilitate web-based human-robot interaction:
the roslibjs client library and ros2djs and ros3djs visualiza-
tion libraries. The design of these libraries enables easy and
flexible development of robot user interfaces that are fast
and responsive. These libraries avoid both a large monolithic
structure (which can be bandwidth intensive like WViz) and a
large package system (which breaks out functionality into too
many separate libraries like ROS). These cases were avoided
principally due to the design of roslibjs to be used entirely
without any visualization dependencies. Standalone widgets
and tools, such as for navigation and mobile manipulation,
can be built on top of these libraries and distributed as such,
as described below:

roslibjs is the client library for communication of ROS
topics, services, and actions. roslibjs includes utilities for

2https://github.com/RobotWebTools/rosbridge_
suite/blob/develop/ROSBRIDGE_PROTOCOL.md

common ROS and robotics tasks such as transform (TF)
clients, URDF (Unified Robot Description Format) parsers,
and common matrix/vector operations, as well as fully com-
patibility with server-side JavaScript environments (such as
node.js).

ros2djs and ros3djs are the visualization libraries for ROS-
related 2D and 3D data types, such as robot models, maps,
laser scans, and point clouds, and interaction modes, such
as interactive markers [24]. Both libraries build on existing
libraries for 2D (EaselJS) and 3D (three.js) rendering on the
HTML5 <canvas> element.

To make releases of the libraries easy and efficient to use,
pre-built and compressed JavaScript files are uploaded to
a public CDN (content delivery network). Such a system
makes use of multiple cache servers around the globe to
serve clients the libraries as efficiently as possible. These
servers manage thousands of hits a week without putting a
load on a single failure point. Figure 2 showcases typical
hits for the hosted RWT libraries for 2015.

IV. EFFICIENT MESSAGING OF
HIGH-BANDWIDTH TOPICS

Although RWT is designed for ease of comprehension and
use, the challenges for creating a robust and reliable systems
has many open questions. Most prominent is the challenge of
real-time control. While new emergent technologies, such as
WebRTC (real-time communication), are helping to improve
efficient communication to and from standard web browsers
[25], these technologies are still experimental, in constant
flux, and widely unsupported at the time of this writing (these
ideas are further discussed in Section VI).

The main problem stems from the amount of data typically
associated with streaming robot sensors and visualization in-
formation in order to minimize latency and permitting usable
supervisory control. Support for “real-time” communication
(e.g., for live streaming) in modern web browsers trade-off
latency due to buffering for smoother streams. Such buffers
add an extra delay (typically in the magnitude of seconds)
which cause the robot interface to seem non-responsive and
confusing to operators.

Further, due to security and other design constraints, it
is not possible to create raw TCP or UDP sockets from
JavaScript in a browser. As such, the most common com-
munication approach for bi-directional client-server commu-
nication is with a WebSocket connection. WebSockets are
built on-top of HTTP and leave an open communication



channel to a WebSocket server. As a consequence to this,
communication is limited to the efficiency and robustness of
HTTP and, thus, unable to send raw or binary data.

Given these constraints, efficient communication of robot
data is critical. We discuss advances made by RWT to over-
come these limitations for several high-bandwidth message
types for transform subscriptions, image streaming, and point
cloud streaming, as well as message compression.

A. Transform Subscriptions

In ROS, information about the multitude reference frames
in robot environments is communicated via a stream of
transform data, specifying how to translate one frame into
another, creating a large, constantly updated tree of geometric
relations. This behavior is regulated by a library known as tf
and tf2 [26]. Since many of the transforms are likely to be
constantly changing and operating on stale data could lead to
problematic behaviors, the tf library requires that all relevant
transforms be constantly published. Any component of the
system can publish additional transforms, making the system
neatly decentralized.

While the constant stream of data creates a robust en-
vironment for many applications, it is not a low-bandwidth-
friendly solution. The sheer amount of data published can be
overwhelming. As Foote notes, the transforms for the PR2
robot can take up to 3Mbps of bandwidth [26]. Furthermore,
much of this data is redundant. For example, if two com-
ponents of a robot are fixed in relation to one another, the
transform between them will still need to be published at
the same rate as the rest of the TF tree in order to keep the
entire tree up to date.

To reduce the amount of bandwidth devoted to tf, RWT
employs the package tf2 web republisher. This is a ROS
node that uses ROS’ action interface to pre-compute re-
quested transforms on demand, which can then be published
via rosbridge with a smaller bandwidth usage. Transforms
are published in reference to some specified global frame at
a reduced rate and only when a link is changed within some
delta. The inclusion of this node simply moves computations
that usually happen within a specific node to happen within
a central authority. The result is the same effective infor-
mation being provided to remote clients, without the same
bandwidth usage.

To illustrate this point, bandwidth usage of TF data over
a one minute period was captured using both the traditional
ROS TF subscription and the web-based subscription. While
the PR2 robot mentioned earlier has been shown to utilize
3Mbps of bandwidth, it can be argued this is due to the
complexity of number of DOFs the PR2 contains. Here, a
more simplified mobile robot was used with a 6-DOF arm
which contained 52 frames. During the capture, the robot’s
base and arm were teleoperated to trigger TF republishes.
For this capture, the web republisher was set to a default
rate of 10.0Hz with change delta values of 0.01 meters and
0.01 radians. Figure 3 visualizes the results from the capture.
Note that the ROS TF rate had an average of 208.5 KB/s

(σ = 1.5) while the web based TF rate was had an average
of 96.0 KB/s (σ = 40.6).

Fig. 3. Average TF Bandwidth from a ROS and Web Based Client

B. Image Streams

Another bandwidth-heavy data stream is any sort of video.
In ROS, three main image streaming techniques are used
as part of the image stream pipeline: raw images which
utilize a ROS image message, compressed images which
utilize JPEG or PNG image compression, and Theora streams
which utilize the Theora video codec. As mentioned earlier,
transport types to the browser are limited. While it would be
possible in theory to send raw ROS images over rosbridge,
the overhead and bandwidth of transporting images in their
text JSON representation would be impracticable.

To overcome this limitation, RWT introduced two trans-
port options which are available to all, or a large subset of
browsers3. The first option utilizes MJPEG streams which
can be embedded in any HTML <img> tag. ROS images
are transformed into series of JPEG images and streamed
directly to the browser. While more efficient options exist,
this transport type is available to all modern web browsers.
The second streaming option utilizes the newer HTML5
<video> tag. This tag allows for more efficient video
codecs to be streamed to a browser. In particular, the VP8
codec standard is used within WebM streams. The main
limitation here is its limited support on modern browsers
(typically well supported on Chrome and Firefox). Fur-
thermore, buffering within the video codecs results in an
unavoidable delay or lag in transmission.

To illustrate bandwidth requirements from ROS to a
browser, we provide an average bandwidth for multiple trans-
port types across a 2 minute capture using a 640x480 pixel
image at 30Hz from a USB camera. MJPEG compression
is set to the default value of 90% while VP8 was set to a
default bitrate of 100,000. Results are presented in Table I.

C. Point Cloud Streams

One of the most bandwidth intensive data types in ROS,
robotics, and computer vision are 3D point clouds. This depth

3Transports are available via the web video server ROS package.



TABLE I
BANDWIDTH USAGE OF IMAGE STREAMS VIA VARIOUS TRANSPORT

TYPES IN KB/S

Web ROS Internal
MJPEG VP8 RAW Compressed Theora

µ 1317.0 342.2 12052.5 1309.3 19.4
σ 11.1 18.3 1.7 11.6 8.9

information, typically overlayed with corresponding RGB
data to form RGBD data, contains much more information
than a video or image stream making it extremely useful
for both computational algorithms as well as visualization.
Standard compression types for point clouds are limited
and certainly not available to web browsers. As such, new
techniques are needed to allow point clouds to be streamed
to the browser efficiently for visualization purposes.

As with image streams, while it would be possible to
stream raw point cloud data across rosbridge in a JSON
encoded message, the overhead and bandwidth requirements
would be too costly to use effectively, even with message
compression. In order to make full use of the built in
compression and streaming features available in modern web
browsers, we have developed a method for encoding RGBD
depth maps as a single image stream which can be sent across
the wire using HTML5 video codecs and extracted in the
browser for visualization.

The key to this idea is that point clouds are not just
used for computation, but also visualization by people. As
such, lossy compression types can be used to dramatically
reduce bandwidth while still maintaining a visually useful
display. This compression is done by streaming a single
image composed of three separate “images” (shown in Fig-
ure 4(a)): encoded depth information from 0 to 3 meters,
encoded depth information from 3 to 6 meters, a binary
mask indicating valid sample points and the RBG image.
Encoded depth information is split into two frames (0-3 and
3-6) in order increase the range of depth information that
can be stored in an image (i.e., a finer discretization). To
increase compression rates, compression artifacts are reduced
by filling areas of unknown depth (typically represented
by NaN) with interpolated sample data. On the client side,
the embedded binary mask can then used to omit these
samples during decoding. This single image is streamed to
the web browser over a VP8 codec (via the web video server
mentioned previously) and is assigned to a WebGL texture
object with a vertex shader which allows for fast rendering
of the point cloud via the clients GPU. An example of the
resulting compressed point cloud image is shown in Figure
4(b).

To illustrate bandwidth requirements, we provide an aver-
age bandwidth for multiple transport types across a 2 minute
capture using an ASUS Xtion Pro RGBD camera. We again
use the default compression values stated earlier. Results are
presented in Table II.

(a) The Encoded Point Cloud Image (b) The Resulting Rendering

Fig. 4. Point Cloud Streaming

TABLE II
BANDWIDTH USAGE OF POINT CLOUD STREAMING IN KB/S

ROS Internal Web Streaming
µ 5591.6 568.4
σ 70.5 133.5

D. Generic Message Compression

Besides transform, image, and point cloud data, there ex-
ists many other formats of high bandwidth data in ROS. High
resolution map data used for robot navigation is often larger
than 2MB per message. 3D visualization and interactive
markers [24] often contain large sets of points needed to
render 3D models in a visualizer. Furthermore, since user-
defined data structures are supported in ROS, a potentially
unbounded amount of data could be sent through a ROS
message.

To support large data streams in the general manner, RWT
allows for compression options to be set. In particular, we
utilize the web browsers built in PNG de-compression to
efficiently package and send large messages in a lossless
manner. If a client specifies that a data stream be sent using
PNG compression, the rosbridge server will start by taking
the raw bytes of the JSON data (in its ASCII representation)
and treat them as the bytes of an RGB image. Padding is
added with null values to create a square image. This image
data is then compressed using standard PNG compression
libraries and sent across the wire using base 64 encoding.
This data can then be read internally by the browser and used
to extract the original RBG values which, in tern, represent
the ASCII JSON encoding of the message itself.

To illustrate the effect this has on message compression,
we transmit a series of typical large format ROS messages
using PNG compression. Results are presented in Table III
which show the original size in KBs, the compressed size in
KBs, and the time to compress and transmit in milliseconds.
As a result, it reduces data less than 30% of its original size
with negligible time loss.

V. SURVEY OF USE CASES

Since its original introduction in 2012 [6], RWT has
been successfully deployed across multiple robot platforms
and a wide range of applications. We posit such significant



TABLE III
PERFORMANCE OF PNG COMPRESSION FOR ROS MESSAGES

Original Compressed Time
Map (732x413) 2725 39 40.0
3D Point Array Marker 42.1 5.1 0.8
3D Line Strip Marker 42.1 4.8 0.9
3D Line List Marker 78.1 7.7 1.0

use demonstrates the need for and impact of open-source
network protocols for robotics, human-robot interaction, and
cloud robotics. The following is a small sampling of projects
the RWT open-source releases4 in compelling research and
development projects.

One of the earliest applications was for the Robots for
Humanity project, which seeks to develop robotic technolo-
gies to help people overcome physical disabilities [27]. For
such applications, users often require custom interfaces that
work on a wide variety of plaforms and several design
iterations to work around physical constraints, which can
more readily be done through RWT than other alternatives.
In this project, a person with a mute quadriplegic disability
collaborated with a team of researchers to develop interfaces
that utilized both the native ROS visualizer and RWT to
enable accessible control of a PR2 and a quad rotor to people
with disabilities. Through these tools, this user was able
operate a robot over the web to shave himself, fetch a towel,
open a refrigerator to retrieve yogurt, and inspect his yard.
Another independent group of researchers has also applied
RWT to the problem of developing a web-based robot control
inteface for quadriplegics [28]. Utilizing the Baxter robot,
this project explores the design of single-switch scanning
interfaces for controlling the robot end effector.

RWT has also been applied to general purpose mobile ma-
nipulation tasks, with both simulated and real-world robots.
Ratner et al. have developed a web-based interface that
is capable of quickly recording large numbers of high-
dimensional demonstrations of mobile manipulation tasks
from non-experts [29]. Coupled with a light weight simulated
environment, the tool is capable of supporting 10 concurrent
demonstrators on a single server, leveraging existing crowd-
sourcing platforms to perform large scale data collection.
Knowledge obtained in simulation is then transferred onto
the physical robot, such as from a simulated to a real-world
PR2.

Similarly, the OpenEASE project [30] also makes use
of simulation and web-based interface to provide a remote
knowledge representation and processing service that aims at
facilitating the use of Artificial Intelligence technology for
equipping robots with knowledge and reasoning capabilities.
Unlike [29], which seeks to advance the mobile manipulation
capabilities of a single robotic system from demonstra-
tion data, OpenEASE analyzes experiences of manipulation
episodes and reasons about what the robot saw, what it
did, how it did that, why, and what effects it caused. This

4https://github.com/RobotWebTools

Fig. 5. The openEASE project by Tenorth, Beetz, et al. is an example of
robot operation and semantic mapping through RWT.

Fig. 6. Browser-based control of a (left) quad rotor and (right) a simulation
of the NASA Robonaut 2.

information is then stored in a platform-independent way, and
can then be retrieved by queries formulated in PROLOG, a
general-purpose logic programming language. The system
can be used both by humans via a web-based graphical
interface, or by robots that use OpenEASE as a cloud-based
knowledge base via a webservice API.

Additional use cases have been found in commercial
applications. Savioke, a startup creating a robot hotel butler,
uses RWT to bridge between ROS, used to control/monitor
the robot, and a web layer, which implements the application
logic (e.g. the delivery application) as well as the user
interfaces. Rethink Robotics runs rosbridge automatically,
which enables users to interface with the robot without
needing a ROS installed platform.

Furthermore, while JavaScript and the web browser are the
chief clients used in conjunction with rosbridge, the protocol
rosbridge provides also creates opportunities for communi-
cating with other platforms that do not have robust ROS
implementations of their own. For example, the jrosbridge
standalone library provides communication with the ROS
platform in native Java allowing for ROS communication on
a number of different operating systems and architectures.
There are also separate projects for using the rosbridge
protocol to communicate with MATLAB and LabView code.
It also provides a low-footprint communication platform for



Arudino projects.

VI. FUTURE TECHNOLOGIES

With the continued development of new web standards,
the capabilities of web applications continue to grow. New
standards allow for web applications to interact more with
the hardware of the device that it is running on, create
more complex interfaces, and communicate using new robust
and efficient protocols. Utilizing these standards can allow
for building ROS web applications with advanced features,
while still offering the platform independence and ease of
use that comes from the web. Additionally, the continued
development of these standards reduces the need for plug-
ins that users would previously have needed to install (such
as Adobe Flash or Microsoft Silverlight) in order to obtain
more access to the underlying computer or perform more
complex computational and network operations.

APIs that allow for access to the sensors and input
devices on a device allows for interfaces to be built that
feel more like a native application. Through the use of
new sensor APIs a web application can now have access to
the device acceleration and orientation. These sensors are
becoming available as the number of portable electronics
(smart phones, tablets, etc.) increases. This can allow for
interfaces where the user can move their device around to
interact, instead of only clicking or touching on the screen.
Other APIs also exist to get the state of a device such
as battery status, geolocation, and improved touch screen
support. These new APIs also open up access to audio and
video devices from the web browser. A web application
can now stream audio and video from the user’s computer’s
webcam and microphone in addition to streaming video to
the browser.

In addition to simply allowing for more information to
be accessed from the browser, new APIs also allow for an
application to do things more efficiently and concisely. Some
of the APIs that is already used by the RWT client libraries
are the canvas and WebGL APIs which allow for high perfor-
mance 2D and 3D graphics in the browser. Web Workers are
another API that allows for running tasks in the background.
JavaScript usually runs in a single thread which means that
performing a complex operation in JavaScript can cause the
UI to lag. Currently if roslibjs receives a large number of
messages or very large messages it must serialize/deserialize
them in the main JavaScript thread, which can block the UI.
If Web Workers were used then these operation could be
performed in the background and potentially even in parallel
allowing for a more responsive UI. Additionally, because
web applications can do things in the background it means
that they do not have to be a thin client any more and can
do processor intensive work.

Furthermore, new web technologies are not just allowing
a better web application, but they also allow for better
communication with a robot. Initial web technologies were
not built for the high bandwidth low latency applications
that are being developed today. In order to build an im-
mersive interface for the user, a lot of information (real-

time video, point clouds, etc) must be streamed to the user
with a minimal delay. As discussed earlier, current solutions
for streaming this kind of data in RWT involve streaming
the information as a compressed video (MJPEG or VP8)
to the client over HTTP. However, because TCP (which
HTTP is built on) is a reliable transport protocol, all of the
information must be successfully transferred to the client
which is not always necessary for responsive visualization
purposes. New web standards, such as WebRTC[25], are
looking to enable developers to build more media intensive
applications. WebRTC allows for the transport of video over
UDP and provides automatic adjustment of the video bitrate
in response to changing available bandwidth. WebRTC not
only allows for the transmission of real time video, but
also supports audio, which opens up the possibilities for
more feedback to the robot operator. In order to create more
interactive applications WebRTC can also support streaming
video and audio from the web browser, which could allow for
the creation of a telepresence robot controlled purely from
the browser.

A critical advance in WebRTC is that it can use direct peer
to peer communication even if one of the peers is behind a
router. This means that the robot could be hidden behind
a NAT device with a server hosting the web application;
that is, the robot’s computer does not have to be directly
exposed to the Internet. The standard not only supports the
delivery of media, but also introduces a high-performance
data channel API which is specifically designed for low-
latency real-time communication. These channels can be
either reliable or unreliable and implement congestion and
flow control as well as encryption. The WebRTC standard has
already been mostly implemented in Chrome, Firefox and
Opera and support is planned for more browsers. It is also
not just limited to desktop browsers, but is also supported
by the mobile versions as well, which allows for the same
technologies to be used on any form factor device. Current
efforts are under-way to bring such standards into the core
RWT libraries and tools allowing for responsive, immersive,
and power portable robot web applications.

VII. CONCLUSION

This paper presents and overview, analysis, and discussion
on how the Robot Web Tools project has enabled advances in
cloud robotics and human-robot interaction research through
the use of efficient and easy to use protocols. By overcoming
challenges of high-bandwidth data flow for robot applications
to the web, researchers are able to better develop and deploy
applications and interaction modes to a wider audience on
a wider range of platforms and devices as shown in a brief
survey of known use cases.

One of the greatest benefits of open source software is
the freedom to extend the code to do things that it was
never originally planned to do. The work in this paper has
enabled an unprecedented level of freedom for visualizing
and interacting with ROS-based systems on a wide variety
of new platforms. Running Robot Web Tools through the
browser enables easy and quick interfaces on new platforms



without the steep learning curve required for writing native
ROS clients for each individual operating system.

It should not be understated how valuable having the
interface design tool be a language that is as pervasive as
JavaScript. With interactive websites growing in prevalence
over the past decade, the number of interface developers
using JavaScript, HTML5 and the related tools has grown as
well. Coupled with the growing capabilities of the modern
web browser, web interfaces have become a new standard.

RWT is a continuing and ongoing effort, like ROS and
many open-source projects in robotics. We have discussed a
number of applications for RWT, many of which were not
initially imagined when designing the rosbridge protocol or
the RWT client libraries. Possible future directions and web
technologies were also described that can help RWT improve
both cloud robotics and HRI. We encourage further extension
and contributions to RWT to help broaden the accessibility
and improve the interoperability of robotics for new web and
network-based applications.
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